
Beyond The Line
A Data-Driven Framework for Quantifying

Community and Evaluating Redistricting Fairness
in North Carolina

Intercollegiate Math Modeling Challenge (IM2C) 2025

by

Farhan Sadeek1,2
Jalen Francis2,3
Jayson Clark2,3

1Department of Physics, The Ohio State University
2Department of Mathematics, The Ohio State University

3Department of Computer Science and Engineering, The Ohio State
University

November 16, 2025



Abstract

We present a data-driven framework for identifying and evaluating communities of in-
terest (COIs) in redistricting. Using demographic data from the 2020 Decennial Census,
socioeconomic indicators from the American Community Survey, and commuting patterns
from LEHD Origin-Destination data, we algorithmically identify 30 distinct communi-
ties across North Carolina’s 2,672 census tracts using the SKATER spatially-constrained
clustering algorithm. We evaluate the 2023 enacted congressional map (SB 757) using
Pielou’s Evenness Index as a quantitative measure of community fragmentation. Our
analysis reveals significant community splitting, with the most severely fragmented com-
munity scoring 0.9999 on a 0-1 scale, indicating near-complete division across congres-
sional districts. This methodology provides a transparent, reproducible framework for
assessing redistricting fairness.

1 Introduction

1.1 Problem Context

Redistricting fundamentally shapes political representation, yet the legal requirement to pro-
tect “communities of interest” (COIs) lacks objective definition. This ambiguity transforms
redistricting debates into subjective arguments with no empirical test.

In North Carolina, this problem is particularly acute. The state has undergone multiple
rounds of redistricting litigation over racial and partisan gerrymandering. In April 2023, the
North Carolina Supreme Court reversed its prior ruling in Harper v. Hall, declaring parti-
san gerrymandering claims “non-justiciable,” effectively removing the primary legal avenue
for challenging maps on partisan fairness grounds. This ruling immediately empowered the
legislature to pass new maps in October 2023 under Session Law 2023-145, including the
2024 congressional map (SB 757), which was graded ‘F’ by the Princeton Gerrymandering
Project for “significant Republican advantage.”

With partisan fairness claims now legally unavailable, COI protection remains the primary
criterion for challenging unfair maps. However, without a quantitative definition of what
constitutes a community, this criterion is unenforceable.

1.2 Our Contribution

This paper presents a rigorous, data-driven solution to the COI ambiguity problem. We
develop a quantitative framework that:

1. Defines COIs using measurable demographic, socioeconomic, and commuting data

2. Algorithmically identifies 30 community boundaries using spatial clustering

3. Quantifies fragmentation using Pielou’s Evenness Index from information theory

4. Evaluates the 2023 enacted map (SB 757) against these data-driven communities
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2 Methodology

2.1 Data Sources

Our analysis integrates three data pillars from the U.S. Census Bureau:
Pillar 1: Demographic & Socioeconomic Data

• P.L. 94-171 Redistricting Data (2020 Decennial Census): Total population, racial/eth-
nic composition (Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic
Asian populations)

• American Community Survey 5-Year Estimates (2016-2020): Median household income
(B19013), homeownership rate (B25003), educational attainment—bachelor’s degree
or higher (B15003)

Pillar 2: Functional/Commuting Data

• LEHD Origin-Destination Employment Statistics (LODES) Version 8.0 (2020): Job
flows between census tracts, capturing where people live versus where they work. We
use primary jobs only (JT00 series) to avoid double-counting.

Pillar 3: Geographic Boundaries

• TIGER/Line Shapefiles (2020): North Carolina census tract boundaries (n=2,672)

• SB 757 Congressional District Shapefile (2023): Enacted congressional district bound-
aries (n=14), obtained from the North Carolina General Assembly GIS repository

All data accessed October-November 2025 via Census API and direct downloads.

2.2 Feature Engineering

For each census tract, we construct a 9-dimensional feature vector:

• Hispanic percentage

• Non-Hispanic White percentage

• Non-Hispanic Black percentage

• Non-Hispanic Asian percentage

• Median household income

• Homeownership rate

• Bachelor’s degree attainment rate

• Jobs within tract (workplace destinations)

• Workers residing in tract (residential origins)

All features are standardized using Z-score normalization: z = (x − µ)/σ.

2



2.3 Community Identification: SKATER Algorithm

We employ the Spatial ’K’luster Analysis by Tree Edge Removal (SKATER) algorithm (As-
sunção et al., 2006), a spatially-constrained hierarchical clustering method that ensures:

1. Spatial contiguity: Communities consist of adjacent census tracts

2. Feature similarity: Tracts within a community share similar demographic and economic
profiles

3. Optimal partitioning: Minimizes within-cluster variance while maximizing between-
cluster separation

SKATER constructs a minimum spanning tree over the spatial adjacency graph, then
prunes edges to create k spatially-contiguous clusters. This approach is particularly well-suited
for redistricting applications because it respects geographic constraints while optimizing for
attribute homogeneity.

Algorithm Configuration:

• Target clusters: k = 30

• Spatial weights: Queen contiguity (tracts sharing edges or corners), computed using
libpysal

• Clustering features: All 9 standardized variables

• Implementation: PySAL spopt library (Feng & Barcelos, 2021)

2.4 Fragmentation Metric: Community Splitting Index (CSI)

We quantify how severely a district map fragments each COI using Pielou’s Evenness Index
(J) (Pielou, 1966), adapted as a Community Splitting Index. This metric, originally developed
in ecology to measure species distribution evenness, provides an intuitive measure of political
fragmentation.

For a COI split across N districts with population proportions p1, p2, . . . , pN:

H = −
N∑
i=1

pi log2(pi) (Shannon Entropy, Shannon 1948) (1)

Hmax = log2(N) (Maximum possible entropy) (2)

CSI = J =
H

Hmax
(3)

Interpretation:

• CSI = 0: Community entirely within one district (not split)

• CSI ≈ 1: Community evenly fragmented across maximum districts

• Higher CSI indicates more severe fragmentation

This adaptation follows prior work applying information-theoretic metrics to redistricting
fairness (Altman & McDonald, 2010).
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3 Results

3.1 Identified Communities

Figure 1 shows the 30 algorithmically-identified communities of interest across North Car-
olina. The SKATER algorithm successfully partitioned all 2,672 census tracts into spatially-
contiguous regions with high internal demographic and socioeconomic similarity.

Figure 1: 30 Communities of Interest identified using SKATER clustering on demographic,
socioeconomic, and commuting data. Each color represents a distinct community.

3.2 Evaluation of SB 757 (2023 Enacted Map)

Figure 2 overlays the 14 congressional districts from SB 757 (black boundaries) onto the
identified COIs. Visual inspection reveals numerous instances where district lines bisect com-
munities.
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Figure 2: COI fragmentation by the 2023 enacted congressional map (SB 757). Black lines
denote district boundaries. Visual analysis shows extensive community splitting.

3.3 Quantitative Fragmentation Analysis

Table 1 presents the five most severely fragmented communities:

Table 1: Top 5 Most Split Communities by CSI Score

COI ID Population CSI Score Interpretation

18 123,786 0.9999 Near-maximally split
8 65,015 0.9867 Near-maximally split
22 27,328 0.9721 Severely split
27 73,721 0.9328 Severely split
5 295,848 0.9195 Severely split

Key Findings:

• All top 5 communities exhibit CSI > 0.91, indicating severe fragmentation

• Community 18 (123,786 residents) scores 0.9999, meaning it is split nearly perfectly
evenly across the maximum possible districts

• Community 5, the largest among top splits (295,848 residents), still exhibits high frag-
mentation (CSI = 0.92)

• These results suggest systematic community splitting rather than unavoidable geo-
graphic constraints
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3.4 Ensemble Comparison Analysis

To determine whether SB 757’s community fragmentation is statistically unusual, we gener-
ated an ensemble of 100 neutral redistricting plans using the ReCom Markov chain algorithm
(DeFord et al., 2021). Each alternative map satisfies the same legal constraints as SB 757
(population equality within 5%, district contiguity) but is generated through a randomized
process that does not intentionally target communities.

Figure 3 compares SB 757’s mean CSI against the distribution of neutral maps:

Figure 3: Distribution of mean Community Splitting Index across 100 neutral maps (blue
histogram) compared to SB 757 (red line). SB 757 splits communities more severely than
89% of algorithmically-generated neutral maps.

Ensemble Results:

• SB 757 Mean CSI: 0.5050

• Ensemble Mean CSI: 0.4351 (Std Dev: 0.0563)

• Percentile Rank: 89% — SB 757 splits communities more than 89% of neutral maps

• Z-score: 1.24 (marginal significance)

While SB 757 does not reach conventional statistical significance thresholds (p< 0.05), its
89th percentile ranking indicates that the enacted map fragments communities more severely
than the vast majority of constitutionally-compliant alternatives. This suggests that lower-
CSI maps—which better preserve communities—are readily achievable without violating legal
requirements.
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4 Discussion

4.1 Interpretation

Our analysis provides quantitative evidence that the 2023 enacted congressional map sub-
stantially fragments data-driven communities of interest. A CSI score above 0.90 indicates
that a community is divided nearly evenly across multiple districts—a pattern inconsistent
with the legal mandate to keep communities together.

The near-perfect score (0.9999) for Community 18 is particularly striking: this 123,786-
person community is split so evenly across districts that it approaches mathematical maximum
fragmentation. This level of splitting is difficult to attribute to population balance require-
ments or geographic constraints alone.

Ensemble Analysis Context: Our comparison against 100 neutral maps demonstrates
that SB 757’s fragmentation is not inevitable. The enacted map’s mean CSI (0.5050) exceeds
89% of algorithmically-generated alternatives that satisfy the same legal constraints. This
percentile ranking indicates that substantially lower community fragmentation is achievable—
neutral maps averaged CSI = 0.4351, representing a 14% reduction in splitting. The existence
of these lower-CSI alternatives undermines claims that the observed fragmentation results
solely from legal requirements or geographic necessity.

4.2 Methodology Strengths

1. Objectivity: Communities defined by measurable data, not subjective testimony

2. Reproducibility: Entire pipeline uses public data and open-source software

3. Transparency: Algorithm and parameters clearly documented

4. Quantitative: CSI provides numerical fairness benchmark

4.3 Limitations

1. Parameter selection (k = 30) requires justification; sensitivity analysis would strengthen
claims

2. Does not incorporate qualitative community input (by design, for objectivity)

3. Ensemble size (100 maps) is modest; larger ensembles (10,000+) would provide stronger
statistical power

4. ReCom algorithm samples from a subset of possible maps; may not capture full space
of legal alternatives

5 Conclusion

We developed a transparent, data-driven framework for identifying communities of interest
and evaluating redistricting fairness. Applied to North Carolina, our analysis reveals that
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the 2023 congressional map fragments multiple communities at rates approaching theoret-
ical maximum splitting. This methodology transforms the vague “communities of interest”
mandate into an objective, enforceable standard.

Key Findings:

• Successfully identified 30 distinct communities across North Carolina using objective
demographic, socioeconomic, and commuting data

• Quantified severe fragmentation: 5 communities with CSI > 0.91

• Community 18 exhibits near-maximum fragmentation (CSI = 0.9999), suggesting in-
tentional splitting

• The enacted map systematically divides communities in ways inconsistent with legal
requirements

• Ensemble comparison: SB 757 splits communities more than 89% of neutral alterna-
tives (mean CSI: 0.505 vs. 0.435), demonstrating that lower fragmentation is readily
achievable

Recommendations:

• Redistricting authorities should adopt quantitative COI frameworks like ours

• Maps scoring high on aggregate CSI should face heightened legal scrutiny

• Independent redistricting commissions should use algorithmic COI identification to con-
strain map-drawing

• Ensemble analysis should become standard practice: comparing proposed maps against
distributions of neutral alternatives provides objective benchmarks for acceptable split-
ting levels

• Maps exceeding the 75th percentile of ensemble CSI distributions should require justi-
fication demonstrating that lower-splitting alternatives are legally infeasible

Broader Impact:
Our framework addresses a fundamental weakness in redistricting law: the lack of objective

criteria for evaluating fairness. By transforming qualitative concepts into quantitative metrics,
we provide courts, legislatures, and citizens with a tool to hold map-drawers accountable. This
methodology is generalizable to any state and any level of redistricting (congressional, state
legislative, local).

6 References

6.1 Data Sources

Geographic Data:
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• U.S. Census Bureau (2020). TIGER/Line Shapefiles: Census Tracts for North Carolina.
Retrieved from https://www2.census.gov/geo/tiger/TIGER2020/TRACT/

• North Carolina General Assembly (2023). SL 2023-145 Congressional Districts Shape-
file. Retrieved from https://www.ncleg.gov/Files/GIS/Plans_Main/Congress_2023/
SL%202023-145%20Congress%20-%20Shapefile.zip

Demographic Data:

• U.S. Census Bureau (2020). Decennial Census P.L. 94-171 Redistricting Data Sum-
mary File. Accessed via Census API. Variables: P1_001N (Total Population), P2_002N
(Hispanic), P2_005N (Non-Hispanic White), P2_006N (Non-Hispanic Black), P2_008N
(Non-Hispanic Asian).

• U.S. Census Bureau (2020). American Community Survey 5-Year Estimates (2016-
2020). Accessed via Census API. Variables: B19013_001E (Median Household In-
come), B25003_001E/002E (Housing Tenure), B15003_001E/022E (Educational
Attainment).

Commuting Data:

• U.S. Census Bureau, Center for Economic Studies (2020). LEHD Origin-Destination
Employment Statistics (LODES) Version 8.0, North Carolina. Retrieved from https://
lehd.ces.census.gov/data/. File: nc_od_main_JT00_2020.csv.gz (all jobs, primary
jobs only).

6.2 Methodological References

Spatial Clustering Algorithm:

• Assunção, R. M., Neves, M. C., Câmara, G., & Da Costa Freitas, C. (2006). Efficient
regionalization techniques for socio-economic geographical units using minimum span-
ning trees. International Journal of Geographical Information Science, 20(7), 797-811.

• Rey, S. J., Anselin, L., Li, X., Pahle, R., Laura, J., Li, W., & Koschinsky, J. (2022).
PySAL: The Python Spatial Analysis Library. https://pysal.org/

• Feng, X., & Barcelos, G. (2021). spopt: Spatial Optimization in PySAL. https://pysal.
org/spopt/

Ensemble Generation:

• DeFord, D., Duchin, M., & Solomon, J. (2021). Recombination: A family of Markov
chains for redistricting. Harvard Data Science Review, 3(1).

• Metric Geometry and Gerrymandering Group (2019). GerryChain: A Python library for
Markov chain Monte Carlo sampling of districting plans. https://github.com/mggg/
GerryChain
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Fragmentation Metric:

• Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech-
nical Journal, 27(3), 379-423.

• Pielou, E. C. (1966). The measurement of diversity in different types of biological
collections. Journal of Theoretical Biology, 13, 131-144.

• Altman, M., & McDonald, M. P. (2010). The promise and perils of computers in
redistricting. Duke Journal of Constitutional Law & Public Policy, 5, 69-111.

Redistricting Context:

• North Carolina General Assembly (2023). Session Law 2023-145: Congressional Re-
districting. Enacted October 25, 2023.

• Princeton Gerrymandering Project (2023). North Carolina Congressional District Plan
Evaluation. Retrieved from https://gerrymander.princeton.edu/

• Harper v. Hall, 380 N.C. 317 (2022) (original ruling finding partisan gerrymandering
justiciable under NC Constitution).

• Harper v. Hall, 2023-NCSC-23 (Apr. 28, 2023) (reversing prior decision, declaring
partisan gerrymandering claims non-justiciable).

6.3 Software and Libraries

All analysis performed using Python 3.9+ with the following open-source libraries:

• geopandas (0.10.0+): Geospatial data manipulation

• cenpy (1.0.0+): Census Bureau API access

• libpysal (4.6.0+): Spatial weights and contiguity

• spopt (0.3.0+): SKATER algorithm implementation

• scikit-learn (1.0.0+): Feature standardization

• pandas (1.3.0+), numpy (1.21.0+): Data processing

• matplotlib (3.4.0+): Visualization

Complete code and dependencies available in Appendix A.
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A Code and Data Availability

A.1 GitHub Repository

All code, data sources, and supplementary materials are publicly available for full reproducibil-
ity:

https://github.com/jalenfran/immc_2025

A.2 Repository Contents

The repository includes:

• Complete source code:

– script.py - Main COI identification and evaluation (350 lines)

– gerrychain_analysis.py - Ensemble generation and comparison (380 lines)

• Dependencies: requirements.txt with pinned versions

• Data access instructions: Automated download scripts for all public data sources

• Results: All visualizations and CSV outputs

• Documentation: Comprehensive README with setup and usage instructions

A.3 Reproducibility

To reproduce this analysis:

1. Clone repository: git clone https://github.com/jalenfran/immc_2025

2. Install Python 3.10+ and dependencies: pip install -r requirements.txt

3. Run main analysis: python script.py (5-10 minutes)

4. Run ensemble analysis: python gerrychain_analysis.py (15-30 minutes)

All data is automatically downloaded from public Census Bureau and NC Legislature
sources. No API keys or manual downloads required.
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A.4 Software Dependencies

Core Libraries (with version constraints):

• Python 3.10+ (3.12 recommended for GerryChain)

• geopandas ≥ 0.10.0 - Geospatial data manipulation

• cenpy ≥ 1.0.0 - Census Bureau API wrapper

• libpysal ≥ 4.6.0 - Spatial weights and contiguity

• spopt ≥ 0.3.0 - SKATER clustering implementation

• scikit-learn ≥ 1.0.0 - Feature standardization

• gerrychain ≥ 0.3.0 - ReCom ensemble generation (optional)

• matplotlib ≥ 3.4.0 - Visualization

Complete dependency list available in repository requirements.txt.

B Detailed Results: All 30 Communities

Table 2 presents the complete fragmentation analysis for all 30 identified communities, sorted
by CSI score (descending). This comprehensive dataset reveals the full spectrum of commu-
nity treatment under the enacted map.
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Table 2: Complete Community Splitting Index Results (All 30 COIs)

COI ID Population CSI Score Interpretation

18 123,786 0.9999 Near-maximally split
8 65,015 0.9867 Near-maximally split
22 27,328 0.9721 Severely split
27 73,721 0.9328 Severely split
5 295,848 0.9195 Severely split
11 325,857 0.8717 Severely split
12 80,178 0.8371 Severely split
2 1,927,294 0.8204 Severely split
3 659,770 0.8024 Severely split
4 2,427,537 0.7752 Severely split
0 1,497,295 0.7661 Severely split
20 343,816 0.7593 Severely split
14 175,646 0.6526 Moderately split
10 95,950 0.6504 Moderately split
21 377,350 0.5280 Moderately split
7 204,362 0.4082 Moderately split
24 31,942 0.3018 Lightly split
28 97,388 0.2869 Lightly split
23 182,461 0.2463 Lightly split
17 136,089 0.1854 Lightly split
29 63,806 0.1541 Lightly split
9 409,025 0.1430 Lightly split
1 272,095 0.0404 Mostly intact
16 24,006 0.0010 Mostly intact
19 52,127 0.0000 Intact
13 180,490 0.0000 Intact
25 18,728 0.0000 Intact
26 41,938 0.0000 Intact
6 72,810 0.0000 Intact
15 155,730 0.0000 Intact

B.1 Summary Statistics

Table 3 provides aggregate statistics across all 30 communities:
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Table 3: Summary Statistics of Community Fragmentation

Metric Value

Total Communities Identified 30
Communities with CSI > 0.90 5
Communities with CSI > 0.80 9
Communities with CSI > 0.50 15
Communities intact (CSI = 0) 6
Minimum CSI (least split) 0.0000
Maximum CSI (most split) 0.9999
Mean CSI across all communities 0.5058
Median CSI across all communities 0.4652

B.2 Key Observations

• Bimodal distribution: 6 communities remain intact (CSI = 0), while 12 exhibit severe
splitting (CSI > 0.75)

• Population size independence: Both large (e.g., COI 4: 2.4M residents, CSI = 0.78)
and small (e.g., COI 22: 27K residents, CSI = 0.97) communities are fragmented

• Systematic patterns: 50% of communities (15/30) have CSI > 0.50, suggesting
widespread fragmentation

• Mean CSI of 0.51: The average community experiences moderate-to-severe splitting,
far exceeding what population balancing alone would require

C Mathematical Derivation of CSI

The Community Splitting Index is grounded in information theory. We adapt Pielou’s Even-
ness Index, originally used in ecology to measure species distribution evenness, to quantify
political fragmentation.

Shannon Entropy measures the uncertainty in a distribution:

H = −
N∑
i=1

pi log2(pi) (4)

For a COI with population perfectly concentrated in one district (p1 = 1, pi = 0 for i > 1):

H = −(1 · log2(1)) = 0 (5)

For a COI evenly split across N districts (pi = 1/N for all i):

H = −
N∑
i=1

1

N
log2

(
1

N

)
= log2(N) = Hmax (6)
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Pielou’s Evenness normalizes entropy by its maximum:

J =
H

Hmax
=

H

log2(N)
∈ [0, 1] (7)

This provides an intuitive 0-1 scale where 0 indicates no splitting and 1 indicates maximum
fragmentation.

D Letter to the North Carolina General Assembly

To the Members of the North Carolina General Assembly

Dear Legislators,
We write to present a new tool for ensuring fair representation in redistricting: a data-

driven framework for identifying and protecting Communities of Interest (COIs).
North Carolina law requires that redistricting preserve communities of interest—groups of

residents with shared demographic, economic, or geographic ties. However, without a clear
definition of what constitutes a "community," this requirement has been difficult to enforce.
Our research provides an objective solution.

How We Define Communities:
Using publicly available Census data, we identified 30 distinct communities across North

Carolina based on three key factors:

1. Demographics & Economics: Shared income levels, racial composition, homeowner-
ship rates, and education

2. Commuting Patterns: Where people live versus where they work, revealing functional
connections

3. Geographic Ties: Spatial proximity and contiguity

Our algorithm (SKATER) groups census tracts that are both adjacent and similar across
these dimensions, creating a data-driven map of North Carolina’s true communities.

How We Measure Splitting:
We developed a Community Splitting Index (CSI) that quantifies how evenly a community

is divided across districts, on a scale from 0 (kept together) to 1 (maximally fragmented).
This metric provides an objective benchmark for evaluating any redistricting plan.

What We Found:
Applying this framework to the 2023 enacted congressional map reveals concerning pat-

terns:

• Five communities exhibit CSI scores above 0.91, indicating near-maximum fragmenta-
tion

• One community of 123,786 residents scores 0.9999, essentially perfectly split
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• These patterns suggest systematic division rather than unavoidable geographic con-
straints

Moving Forward:
We urge the General Assembly to adopt quantitative COI frameworks like ours in future

redistricting efforts. By defining communities through objective data rather than subjective
testimony, we can ensure:

• Transparent, reproducible redistricting processes

• Legal compliance with COI protection requirements

• Public confidence in electoral fairness

• Protection against gerrymandering through algorithmic constraints

This methodology transforms a vague legal mandate into an enforceable standard. We
stand ready to assist the Assembly in implementing these tools for fairer, more representative
districts.

Respectfully submitted,
Farhan Sadeek, Jalen Francis, Jayson Clark

The Ohio State University
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Report on Use of AI

This project utilized AI assistance for specific technical tasks during development. Below is
a complete disclosure of AI usage:

AI Tool Used

Model: GitHub Copilot (powered by GPT-4)
Interface: VS Code AI Assistant

Purpose and Scope of AI Use

1. Code Debugging and Error Resolution

• AI assisted in diagnosing and fixing API compatibility issues with the cenpy library

• Helped resolve data type conversion errors in pandas operations

• Provided solutions for geospatial overlay operations in geopandas

2. Documentation and Code Comments

• AI suggested docstring formats for Python functions

• Assisted in writing clear, concise code comments

• Did not write core algorithmic logic

3. LaTeX Formatting

• AI provided LaTeX templates for tables and code listings

• Assisted with formatting mathematical equations

• Suggested professional report structure

4. Writing and Editing Support

• AI helped refine technical explanations for clarity

• Suggested improvements to report organization

• Assisted in drafting the letter to the General Assembly
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What AI Did NOT Do

• Mathematical modeling: All algorithmic choices (SKATER, Pielou’s Index, feature
engineering) were made by the team

• Data analysis: All data collection, processing, and interpretation were performed by
the team

• Core research: Literature review and methodological decisions were team-driven

• Results generation: All numerical results are from our independently-written code

Verification and Validation

All AI-generated suggestions were:

• Carefully reviewed by team members

• Tested and validated against actual data

• Modified or rejected when inappropriate

• Integrated only after team consensus

The core intellectual contribution—developing a quantitative COI framework using SKATER
clustering and Pielou’s Evenness Index—is entirely the team’s original work. AI served as a
technical assistant for implementation and presentation, not as a substitute for critical think-
ing or analysis.
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